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In this paper, the active disturbance rejection control (ADRC) approach is applied to a class of multi-input multioutput (MIMO)
uncertain stochastic nonlinear systems. An extended state observer (ESO) is first designed for estimation of both unmeasured
states and stochastic total disturbance of each subsystem which represents the total effects of internal unmodeled stochastic
dynamics and external stochastic disturbance with unknown statistical property. The ADRC controller based on the states of ESO
is further designed to achieve the closed-loop system’s output regulation performance including practical mean square reference
signals tracking, disturbance attenuation, and practical mean square stability when the reference signals are zero avoiding solving
any partial differential equations in the conventional output regulation theory. Some numerical simulations are presented to
demonstrate the effectiveness of the proposed ADRC approach.

1. Introduction

During the past couple of years, there have been existing
representative control approaches to cope with uncertainties
in controlled plants such as the internalmodel principle [1–3],
the robust control [4], and the adaptive control [5]. Neverthe-
less, a majority of these control methods pay attention to the
worst situation so that the design of controller is compara-
tively conservative. The active disturbance rejection control
(ADRC), as a nontraditional control strategy, was first put
forward by Han in leading paper [6]. The disturbance coped
with by ADRC is much more general which can be the total
coupling effects of internal unmodeled system dynamics and
external disturbance. The most noteworthy feature of ADRC
is that an extended state observer (ESO), as its key part, is
designed to estimate the disturbance in real time so that the
disturbance can be cancelled in the ESO-based feedback loop.
This estimation/cancellation strategy leads to less control
energy consumption in the control engineering practice [7].

Many industry practitioners have been paying more
attention to theADRCapproach as presented in recent survey
type paper [8]. Specific applications in different fields emerge
in large numbers including synchronous motors [9], DC-DC
power converters [10], control system in superconducting RF
cavities [11], and flight vehicles control [12]. On the other
hand, there have been lots of theoretical researches like
the convergence analysis of ADRC for uncertain nonlinear
systems [13–16] and the stabilization and output tracking
problem for distributed parameter systems by the ADRC
approach [17–21].

However, tardy theoretical progress has been made about
ADRC for stochastic systems. Some progress could be found
such as the practical mean square convergence analysis
of ESO for the open-loop of a class of MIMO stochas-
tic nonlinear systems [22] and the practical mean square
convergence analysis of ADRC for both single-input single-
output stochastic nonlinear systems [23] and lower triangular
stochastic nonlinear systems [24]. The practical mean square
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stability of MIMO stochastic nonlinear systems by the ADRC
approach is addressed in [25].

Although there have been some works on ADRC for
stochastic nonlinear systems like [22, 24, 25] where the con-
sidered external disturbance is the bounded stochastic noise
with unknown statistical characteristics existing widely in
practical systems [26–28], the output regulation problem
for this class of stochastic nonlinear systems receives less
attention. In [22], the authors focus on the convergence
of practical mean square estimation errors by ESO for the
open-loop of systems without considering the performances
of the closed-loop system under the ESO-based feedback.
The practical mean square stability of the ADRC’s closed-
loop systems is investigated for lower triangular stochastic
nonlinear systems in [24] and MIMO stochastic nonlinear
ones in [25] where the output-feedback stabilization problem
is just a special case of the output regulation one in this
paper. As the continuous research of [22–25], the ADRC
approach is applied in the output regulation problem for a
class of MIMO uncertain stochastic nonlinear systems with
large stochastic uncertainties including unknown nonlin-
ear system functions, external stochastic disturbance with
unknown statistical property, unknown stochastic inverse
dynamics, uncertain nonlinear coupling effects between sub-
systems, and uncertainties caused by the partially unknown
input gains, where the output regulation performance of the
resulting closed-loop systems includes practical mean square
reference tracking, disturbance attenuation, and practical
mean square stability when the reference signals are zero. To
be specific, in this paper we consider the output regulation
problem for the partial exact feedback linearizable MIMO
system [29] subject to vast stochastic uncertainties as follows:

𝑑𝑥𝑖 = 𝐴𝑛𝑖𝑥𝑖𝑑𝑡 + 𝐵𝑛𝑖 [𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤) + 𝑚∑
𝑙=1

𝑏𝑖𝑙𝑢𝑙]𝑑𝑡,𝑑𝜁 = 𝑔1 (𝑡, 𝑥, 𝜁, 𝑤) 𝑑𝑡 + 𝑔2 (𝑡, 𝑥, 𝜁, 𝑤) 𝑑𝑊1 (𝑡) ,𝑦𝑖 = 𝐶𝑛𝑖𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑚, (1)

where 𝑥 = (𝑥⊤1 , . . . , 𝑥⊤𝑚)⊤ ∈ R𝑛 with 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑛𝑖)⊤ and𝑛 = 𝑛1 + ⋅ ⋅ ⋅ + 𝑛𝑚, 𝑢 = (𝑢1, . . . , 𝑢𝑚)⊤ ∈ R𝑚, and 𝑦 =(𝑦1, . . . , 𝑦𝑚)⊤ ∈ R𝑚 are the state, control, and measured out-
put of the system, respectively; 𝜁 = (𝜁1, . . . , 𝜁𝑠)⊤ ∈ R𝑠 denotes
the state of stochastic inverse dynamics; the functions 𝑓𝑖 :[0,∞) × R𝑛+𝑠+1 → R, 𝑔1 : [0,∞) × R𝑛+𝑠+1 → R𝑠, and𝑔2 : [0,∞) × R𝑛+𝑠+1 → R𝑠×𝑝 are unknown; the constants𝑏𝑖𝑙 (𝑖, 𝑙 = 1, 2, . . . , 𝑚) are the partially unknown control
coefficients with some known nominal values 𝑏∗𝑖𝑙 satisfying
Assumption (A3); {𝑊1(𝑡)}𝑡≥0 is a p-dimensional standard
Wiener process defined on a complete probability space(Ω,F, {F𝑡}𝑡≥0, 𝑃) with Ω being a sample space, F a 𝜎-field,{F𝑡}𝑡≥0 a filtration, and 𝑃 the probability measure; 𝑤(𝑡) ≜𝜓(𝑡,𝑊2(𝑡)) ∈ R is the external stochastic disturbance where𝜓(⋅) : [0,∞) × R𝑞 → R is an unknown bounded function
satisfying Assumption (A1) and {𝑊2(𝑡)}𝑡≥0 is a q-dimensional
standardWiener process defined on (Ω,F, {F𝑡}𝑡≥0, 𝑃) aswell

and is mutually independent with {𝑊1(𝑡)}𝑡≥0; in addition, we
denote 𝐴𝑛𝑖 = (0 𝐼𝑛𝑖−10 0 )

𝑛𝑖×𝑛𝑖

,𝐵𝑛𝑖 = (0, . . . , 0, 1)⊤𝑛𝑖×1 ,𝐶𝑛𝑖 = (1, 0, . . . , 0)1×𝑛𝑖 .
(2)

For each 1 ≤ 𝑖 ≤ 𝑚, the stochastic total disturbance of
each 𝑖-subsystem is defined as follows:𝑥𝑖(𝑛𝑖+1) ≜ 𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤) + 𝑚∑

𝑙=1

(𝑏𝑖𝑙 − 𝑏∗𝑖𝑙 ) 𝑢𝑙, (3)

which represents the total effects of unknown nonlinear sys-
tem functions, external stochastic disturbance with unknown
statistical property, unknown stochastic inverse dynamics,
uncertain nonlinear coupling effects between subsystems,
and uncertainties caused by the partially unknown input
gains. So the stochastic uncertainties in the considered system
are very complex.

For given, bounded, deterministic reference signals V𝑖(𝑡)(𝑖 = 1, 2, . . . , 𝑚) whose derivatives V̇𝑖(𝑡), V̈𝑖(𝑡), . . . , V(𝑛𝑖+1)𝑖 (𝑡)
are assumed to be bounded, the control objective is to
design an output-feedback control such that for any initial
states the output 𝑦𝑖 converges practically to V𝑖(𝑡) in mean
square sense and at the same time 𝑥𝑖𝑗 converge practically
to V(𝑗−1)𝑖 (𝑡) in mean square sense for all 𝑗 = 2, . . . , 𝑛𝑖. The
output-feedback stabilization problem for the class of MIMO
uncertain stochastic nonlinear systems is covered by letting
V𝑖(𝑡) ≡ 0 for all 𝑡 ≥ 0.

On the basis of a partial exact feedback linearizable
MIMO system [29] widely investigated in control theory
and the fact that stochastic uncertainties are ubiquitous in
practical control engineering and often cause disadvanta-
geous effects on control performance, the ADRC approach
is addressed for the output regulation problem of system (1)
including practical mean square reference signals tracking,
disturbance attenuation, and practical mean square stability
when the reference signals are zero in this paper. It should be
noticed that system (1) representing a partial exact feedback
linearizable MIMO system [29] with vast stochastic uncer-
tainties is quite general and has physical and engineering
background. Firstly, the SISO nonlinear systems and MIMO
nonlinear ones widely addressed by the ADRC approach in
available literatures [6, 7, 13, 14, 21, 30] are covered as special
cases of system (1) when 𝜓(⋅) is the function of time variable𝑡 only: 𝑤(𝑡) ≜ 𝜓(𝑡) and 𝑔2(⋅) ≡ 0. Secondly, the external
stochastic disturbance𝑤(𝑡) is quite general in the sense that it
is not required to know its statistical characteristics since the
function 𝜓(⋅) can be unknown and the bounded stochastic
noise investigated in [26–28] in many practical systems is
also covered as its special case. Finally, system (1) covers
some stochastic systems considered in the aforementioned
literatures like SISO stochastic nonlinear systems in [31] when𝑚 = 1, 𝜁(⋅) ≡ 0, and 𝑏11 = 1.
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The main contributions of this paper can be summa-
rized as follows: (a) The ADRC approach is systemati-
cally proposed to solve the output regulation problem for
a class of MIMO uncertain stochastic nonlinear systems
without difficulty in solving any partial differential equations
compared with the conventional output regulation theory.
(b) The stochastic uncertainties dealt with by ADRC in
this paper are very general including unknown nonlin-
ear system functions, external stochastic disturbance with
unknown statistical property, unknown stochastic inverse
dynamics, uncertain nonlinear coupling effects between sub-
systems, and uncertainties caused by the partially unknown
input gains. (c) Most available output-feedback controls for
stochastic nonlinear systems are designed to guarantee the
global asymptotic stability in probability provided that the
noise vector field vanishes at the origin [32] or only the
noise-to-state (or input-to-state) stability in probability [33]
otherwise. In this paper, however, the practical mean square
convergence is obtained by the ADRC approach without
assuming that the noise vector field should be vanishing at the
origin.

The rest of this paper is presented as follows. In
Section 2, both ESO and ESO-based feedback control are
designed for the 𝑥-subsystem of (1), the assumptions of the
main result are stated, and the output regulation perfor-
mance of the closed-loop is summarized as Theorem 2. In
Section 3, a rigorous proof of Theorem 2 is given. Finally,
in Section 4, some numerical simulations are presented
to illustrate the effectiveness of the proposed ADRC ap-
proach.

The following notations are used throughout this paper.
R𝑛 denotes the 𝑛-dimensional Euclidean space and R𝑛×𝑚

represents the space of all real 𝑛 × 𝑚-matrices; for a vector
or matrix 𝐾,𝐾⊤ denotes its transpose; for a square matrix 𝐾,
Tr(𝐾) denotes its trace; 𝐼𝑛×𝑛 denotes the 𝑛 × 𝑛 unit matrix;𝜆min(𝐾) and 𝜆max(𝐾) denote the minimal and maximal
eigenvalues of the symmetric real matrix 𝐾, respectively;‖𝐾‖ denotes the Euclidean norm of the vector 𝐾 and the
corresponding induced norm when 𝐾 is a matrix; (𝑎(𝑖𝑗))𝑚×𝑛
denotes an𝑚× 𝑛matrix with entries 𝑎(𝑖𝑗); for a differentiable
function 𝑓 : R𝑛 → R, 𝜕𝑓/𝜕𝑧 ≜ (𝜕𝑓/𝜕𝑧1, . . . , 𝜕𝑓/𝜕𝑧𝑛)⊤
for 𝑧 = (𝑧1, . . . , 𝑧𝑛)⊤; for a twice differentiable function 𝑓 :
R𝑛 → R, 𝜕2𝑓/𝜕𝑧2 ≜ (𝜕2𝑓/𝜕𝑧𝑖𝑧𝑗)𝑛×𝑛 (𝑖, 𝑗 = 1, 2, . . . , 𝑛)
for 𝑧 = (𝑧1, . . . , 𝑧𝑛)⊤; for a matrix valued function 𝑓 :
R𝑛 → R𝑚×𝑠, 𝑓 ≜ (𝑓(𝑖𝑗))𝑚×𝑠 (𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2,. . . , 𝑠).
2. Main Results

By analogy with [30], the one-parameter tuning linear ESO
for the 𝑥-subsystem of (1) is designed as follows:̇̂𝑥𝑖1 = 𝑥𝑖2 + 𝑎𝑖1𝑟 (𝑦𝑖 − 𝑥𝑖1) ,̇̂𝑥𝑖2 = 𝑥𝑖3 + 𝑎𝑖2𝑟2 (𝑦𝑖 − 𝑥𝑖1) ,...

̇̂𝑥𝑖𝑛𝑖 = 𝑥𝑖(𝑛𝑖+1) + 𝑎𝑖𝑛𝑖𝑟𝑛𝑖 (𝑦𝑖 − 𝑥𝑖1) + 𝑚∑
𝑙=1

𝑏∗𝑖𝑙 𝑢𝑙,̇̂𝑥𝑖(𝑛𝑖+1) = 𝑎𝑖(𝑛𝑖+1)𝑟𝑛𝑖+1 (𝑦𝑖 − 𝑥𝑖1) , 𝑖 = 1, 2, . . . , 𝑚,
(4)

where 𝑎𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛𝑖 + 1) are designed
parameters such that the following matrix is Hurwitz:

𝐸𝑖 =((
(

−𝑎𝑖1 1 0 ⋅ ⋅ ⋅ 0−𝑎𝑖2 0 1 ⋅ ⋅ ⋅ 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅−𝑎𝑖𝑛𝑖 0 0 d 1−𝑎𝑖(𝑛𝑖+1) 0 0 ⋅ ⋅ ⋅
))
)(𝑛𝑖+1)×(𝑛𝑖+1)

, (5)

𝑟 > 0 is the gain parameter to be tuned, and 𝑏∗𝑖𝑙 is the
nominal value of 𝑏𝑖𝑙 satisfying Assumption (A3). ESO 2 is
designed to estimate both stochastic total disturbance and
unmeasured states by choosing suitable parameters 𝑎𝑖𝑗 and
tuning the gain parameter 𝑟. Specially, 𝑥𝑖(𝑛𝑖+1) is the estimate
of the stochastic total disturbance 𝑥𝑖(𝑛𝑖+1) defined by (3). It
should be noted that we only need to tune one parameter 𝑟
in ESO 2 based on the estimation accuracy and the variation
of the stochastic total disturbance. Generally, the higher the
estimation accuracy is needed and the faster the stochastic
total disturbance varies, the larger the parameter 𝑟 needs to
be set. Here and throughout the paper, we always drop 𝑟 for
the solution of 2 by abuse of notation without confusion.

For all 1 ≤ 𝑖 ≤ 𝑚, let(V𝑖1, V𝑖2, . . . , V𝑖(𝑛𝑖+1)) = (V𝑖, V̇𝑖, . . . , V(𝑛𝑖)𝑖 ) (6)

and𝑖 (𝑧𝑖1, . . . , 𝑧𝑖𝑛𝑖) = 𝑘𝑖1𝑧𝑖1 + 𝑘𝑖2𝑧𝑖2 + ⋅ ⋅ ⋅ + 𝑘𝑖𝑛𝑖𝑧𝑖𝑛𝑖 ,∀ (𝑧𝑖1, . . . , 𝑧𝑖𝑛𝑖)⊤ ∈ R
𝑛𝑖 . (7)

ESO 2 based output-feedback control is designed as𝑢𝑖 = 𝑚∑
𝑙=1

�̂�∗𝑖𝑙 (𝑙 (𝑥𝑙1 − V𝑙1 (𝑡) , 𝑥𝑙2 − V𝑙2 (𝑡) , . . . , 𝑥𝑙𝑛𝑙− V𝑙𝑛𝑙 (𝑡)) − 𝑥𝑙(𝑛𝑙+1) + V𝑙(𝑛𝑙+1) (𝑡)) , 1 ≤ 𝑖 ≤ 𝑚, (8)

where �̂�∗𝑖𝑙 are defined in (13) and the feedback gain parameters𝑘𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛𝑖) are chosen such that the
following matrix is Hurwitz:

𝐹𝑖 =((
(

0 1 0 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 0 d 1𝑘𝑖1 𝑘𝑖2 ⋅ ⋅ ⋅ 𝑘𝑖(𝑛𝑖−1) 𝑘𝑖𝑛𝑖
))
)𝑛𝑖×𝑛𝑖

. (9)
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To obtain practical mean square convergence of the
closed-loop of the 𝑥-subsystem of (1) under ESO 2 based
output-feedback control (8) including ESO’s estimation of
unmeasured states and stochastic total disturbance, practical
mean square reference signals tracking, disturbance atten-
uation, and practical mean square stability, the following
assumptions are needed.

Assumption (A1) is about the unknown function 𝜓(⋅)
defining the external stochastic disturbance.

Assumption (A1). 𝜓(𝑡, 𝜃) : [0,∞) × R𝑞 → R is contin-
uously differentiable and twice continuously differentiable
with respect to 𝑡 and 𝜃, respectively, and there exists a known
constant 𝐷1 > 0 such that, for all 𝜃 = (𝜃1, . . . , 𝜃𝑞)⊤ ∈ R𝑞,

𝜓 (𝑡, 𝜃) + 𝜕𝜓 (𝑡, 𝜃)𝜕𝑡  + 𝜕𝜓 (𝑡, 𝜃)𝜕𝜃  + 𝑞∑𝑖=1  𝜕2𝜓 (𝑡, 𝜃)𝜕𝜃2𝑖 ≤ 𝐷1. (10)

Remark 1. Roughly speaking, Assumption (A1) indicates
that both the external stochastic disturbance and its “vari-
ation” should be bounded which is reasonable since it is
as a part of the stochastic total disturbance estimated by
ESO.

Assumption (A2) is a prior assumption about the
unknown functions 𝑓𝑖(⋅), 𝑔1(⋅), and 𝑔2(⋅) in system (1).

Assumption (A2). 𝑓𝑖(⋅) (𝑖 = 1, . . . , 𝑚) are continuously dif-
ferentiable and twice continuously differentiable with respect
to 𝑡 and other arguments, respectively, and 𝑔𝑖(⋅) (𝑖 = 1, 2)
are locally Lipschitz continuous in (𝑥, 𝜁, 𝑤) uniformly in 𝑡 ∈[0,∞).There exist known constants 𝐷𝑖 ≥ 0 (𝑖 = 2, 3, 4) and a
nonnegative continuous function 𝜍 ∈ 𝐶(R;R) such that, for
all 𝑡 ≥ 0, 𝑥 ∈ R𝑛, 𝜁 ∈ R𝑠, 𝑤 ∈ R, 𝑖 = 1, 2, . . . , 𝑚, 𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝑡  + 𝑔1 (𝑡, 𝑥, 𝜁, 𝑤) ≤ 𝐷2 + 𝐷3 ‖𝑥‖+ 𝜍 (𝑤) , (11)𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝑥  + 𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝜁 + 𝑠∑

𝑗,𝑙=1

 𝜕2𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝜁𝑗𝜕𝜁𝑙  +  𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝑤 + 𝜕2𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝑤2  + 𝑝∑𝑗=1 𝑠∑𝑖=1 𝑔(𝑖𝑗)2 (𝑡, 𝑥, 𝜁, 𝑤) ≤ 𝐷4+ 𝜍 (𝑤) .
(12)

Assumption (A3) is about the prior estimates 𝑏∗𝑖𝑙 (𝑖, 𝑙 =1, 2, . . . , 𝑚) for the unknown control parameters 𝑏𝑖𝑙 (𝑖, 𝑙 =1, 2, . . . , 𝑚) in system (1).

Assumption (A3). The matrix with entries 𝑏∗𝑖𝑙 (𝑖, 𝑙 =1, 2, . . . , 𝑚) in 2 is invertible with the inverse matrix given by

(𝑏∗11 𝑏∗12 ⋅ ⋅ ⋅ 𝑏∗1𝑚𝑏∗21 𝑏∗22 ⋅ ⋅ ⋅ 𝑏∗2𝑚... ... d
...𝑏∗𝑚1 𝑏∗𝑚2 ⋅ ⋅ ⋅ 𝑏∗𝑚𝑚)

−1

=(
(

�̂�∗11 �̂�∗12 ⋅ ⋅ ⋅ �̂�∗1𝑚�̂�∗21 �̂�∗22 ⋅ ⋅ ⋅ �̂�∗2𝑚... ... d
...�̂�∗𝑚1 �̂�∗𝑚2 ⋅ ⋅ ⋅ �̂�∗𝑚𝑚
)
)

,
(13)

and the nominal values 𝑏∗𝑖𝑙 of 𝑏𝑖𝑙 satisfyΞ ≜ 1 − 𝑚∑
𝑖,𝑙,𝑑=1

2𝜆𝑚𝑎𝑥 (𝑄𝑖) (𝑏𝑖𝑙 − 𝑏∗𝑖𝑙 ) �̂�∗𝑙𝑑𝑎𝑑(𝑛𝑑+1) > 0, (14)

where 𝑄𝑖 are the positive definite matrix solution satisfying𝑄𝑖𝐸𝑖 + 𝐸⊤𝑖 𝑄𝑖 = −𝐼(𝑛𝑖+1)×(𝑛𝑖+1).
The main result on practical mean square convergence

of the closed-loop of the 𝑥-subsystem of (1), 2, and (8),
which includes ESO’s practical mean square estimation of
both unmeasured states and stochastic total disturbance and
output regulation performance, is summarized inTheorem 2.

Theorem 2. Under Assumptions (A1)–(A3) and supposing
that sup𝑡≥0‖(V𝑖(𝑡), V̇𝑖(𝑡), . . . , V(𝑛+1)𝑖 (𝑡))‖ ≤ 𝑀 for some constant𝑀 ≥ 0, then the closed-loop of the 𝑥-subsystem of (1), 2, and (8)
is practicallymean square convergent in the sense that there are
a constant 𝑟∗ > 0 (specified by (32) later) and a 𝑟-dependent
constant 𝑡∗𝑟 > 0with 𝑟 > 𝑟∗ such that, for any initial values and
all 𝑡 ≥ 𝑡∗𝑟 ,
E
𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡)2 ≤ Γ𝑟2𝑛𝑖+3−2𝑗 ,1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖 + 1, (15)

and

E
𝑥𝑖𝑗 (𝑡) − V𝑖𝑗 (𝑡)2 ≤ Γ𝑟 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖, (16)

where Γ > 0 is a 𝑟-independent constant.
Remark 3. It should be noticed that the practical mean
square convergence addressed in this paper includes ESO’s
practical mean square estimation of both unmeasured states
and stochastic total disturbance and output regulation per-
formance for the closed-loop system, but the practical mean
square convergence addressed in [22] only refers to ESO’s
practical mean square estimation of both unmeasured states
and stochastic total disturbance for the open-loop system. In
addition, there does not exist an essential difference between
the upper bound of the estimation error of ESO in practical
mean square sense in this paper and the one in [22] since the
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high gain parameter in ESO is denoted by 𝑟 in this paper and
by 1/𝜀 in [22], respectively.

3. Proof of the Main Result

Proof of Theorem 2. For all 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖 + 1, we set
𝜂𝑖𝑗 = 𝑟𝑛𝑖+1−𝑗 (𝑥𝑖𝑗 − 𝑥𝑖𝑗) ,𝜂𝑖 = (𝜂𝑖1, . . . , 𝜂𝑖(𝑛𝑖+1))⊤ ,𝜂 = (𝜂⊤1 , . . . , 𝜂⊤𝑚)⊤ ,𝜅𝑖𝑗 = 𝑥𝑖𝑗 − V𝑖𝑗 (𝑡) ,𝜅𝑖 = (𝜅𝑖1, . . . , 𝜅𝑖𝑛𝑖)⊤ ,𝜅 = (𝜅1, . . . , 𝜅𝑚)⊤ ,

(17)

Δ 𝑖 = 𝑖 (𝑥𝑖1 − V𝑖1 (𝑡) , 𝑥𝑖2 − V𝑖2 (𝑡) , . . . , 𝑥𝑖𝑛𝑖 − V𝑖𝑛𝑖 (𝑡))− 𝑖 (𝜅𝑖) , (18)

Φ𝑖 (𝑥𝑖) = (𝑥𝑖2, 𝑥𝑖3, ⋅ ⋅ ⋅ ,𝑖 (𝑥𝑖1 − V𝑖1 (𝑡) , 𝑥𝑖2 − V𝑖2 (𝑡) , . . . , 𝑥𝑖𝑛𝑖 − V𝑖𝑛𝑖 (𝑡))+ 𝑥𝑖(𝑛𝑖+1) − 𝑥𝑖(𝑛𝑖+1))⊤ ,Φ (𝑥) = (Φ1 (𝑥1)⊤ , Φ2 (𝑥2)⊤ , . . . , Φ𝑚 (𝑥𝑚)⊤)⊤ .
(19)

By Itô’s formula, we can obtain that

𝑑𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)along(1) = {𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝑡+ (𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝑥 )⊤Φ(𝑥) + (𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝜁 )⊤⋅ 𝑔1 (𝑡, 𝑥, 𝜁, 𝑤) + 12⋅ Tr{𝑔⊤2 (𝑡, 𝑥, 𝜁, 𝑤) 𝜕2𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝜁2 𝑔2 (𝑡, 𝑥, 𝜁, 𝑤)}
+ 𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝑤 (𝜕𝜓 (𝑡,𝑊2 (𝑡))𝜕𝑡 + 12⋅ 𝑞∑
𝑖=1

𝜕2𝜓 (𝑡,𝑊2 (𝑡))𝜕𝜃2𝑖 ) + 12 𝜕2𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝑤2⋅ 𝑞∑
𝑖=1

(𝜕𝜓 (𝑡,𝑊2 (𝑡))𝜕𝜃𝑖 )2}𝑑𝑡

+ (𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝜁 )⊤ 𝑔2 (𝑡, 𝑥, 𝜁, 𝑤) 𝑑𝑊1 (𝑡)
+ 𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝑤 (𝜕𝜓 (𝑡,𝑊2 (𝑡))𝜕𝜃 )⊤ 𝑑𝑊2 (𝑡)≜ 𝜗𝑖1𝑑𝑡 + 𝜗𝑖2𝑑𝑊1 (𝑡) + 𝜗𝑖3𝑑𝑊2 (𝑡) ,

(20)

where we set𝜗𝑖2 = (𝜗𝑖2,𝑗)1×𝑝 ,𝜗𝑖2,𝑗 = 𝑠∑
𝑙=1

𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝜁𝑙 𝑔(𝑙𝑗)2 (𝑡, 𝑥, 𝜁, 𝑤) ,
𝜗𝑖3 = (𝜗𝑖3,𝑗)1×𝑞 ,𝜗𝑖3,𝑗 = 𝜕𝑓𝑖 (𝑡, 𝑥, 𝜁, 𝑤)𝜕𝑤 𝜕𝜓 (𝑡,𝑊2 (𝑡))𝜕𝜃𝑗 .

(21)

By Assumptions (A1)-(A2), we can easily conclude that
there exist 𝑟-independent positive constants 𝛿𝑖1, 𝛿𝑖2, 𝛿𝑖3, 𝛿𝑖4
such that 𝜗𝑖1 ≤ 𝛿𝑖1 + 𝛿𝑖2 𝜂 + 𝛿𝑖3 ‖𝜅‖ ,𝜗𝑖22 + 𝜗𝑖32 ≤ 𝛿𝑖4. (22)

Moreover,

𝑑𝑑𝑡 along(4) [ 𝑚∑𝑙=1 (𝑏𝑖𝑙 − 𝑏∗𝑖𝑙 ) 𝑢𝑙] = 𝑑𝑑𝑡 along(4)⋅ [ 𝑚∑
𝑙,𝑑=1

(𝑏𝑖𝑙 − 𝑏∗𝑖𝑙 ) �̂�∗𝑙𝑑⋅ (𝑑 (𝑥𝑑1 − V𝑑1 (𝑡) , . . . , 𝑥𝑑𝑛𝑑 − V𝑑𝑛𝑑 (𝑡)) − 𝑥𝑑(𝑛𝑑+1)+ V𝑑(𝑛𝑑+1) (𝑡))] = 𝑚∑
𝑙,𝑑=1

(𝑏𝑖𝑙 − 𝑏∗𝑖𝑙 ) �̂�∗𝑙𝑑
⋅ {{{𝑛𝑑−1∑𝑗=1 𝑘𝑑𝑗 (𝑥𝑑(𝑗+1) − V𝑑(𝑗+1) (𝑡) + 𝑎𝑑𝑗𝑟𝑛𝑑−𝑗 𝜂𝑑1)}}}+ 𝑚∑
𝑙,𝑑=1

(𝑏𝑖𝑙 − 𝑏∗𝑖𝑙 ) �̂�∗𝑙𝑑{𝑘𝑑𝑛𝑑 (𝑥𝑑(𝑛𝑑+1) − V𝑑(𝑛𝑑+1) (𝑡)
+ 𝑎𝑑𝑛𝑑𝜂𝑑1 + 𝑚∑

𝑘=1

𝑏∗𝑑𝑘𝑢𝑘)} + 𝑚∑
𝑙,𝑑=1

(𝑏𝑖𝑙 − 𝑏∗𝑖𝑙 )
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⋅ �̂�∗𝑙𝑑 (−𝑟𝑎𝑑(𝑛𝑑+1)𝜂𝑑1) + 𝑚∑
𝑙,𝑑=1

(𝑏𝑖𝑙 − 𝑏∗𝑖𝑙 ) �̂�∗𝑙𝑑V̇𝑑(𝑛𝑑+1) (𝑡)≜ 𝜗𝑖4.
(23)

Suppose that 𝑟 > 1. It follows that there exist 𝑟-independent
positive constants 𝛿𝑖5, 𝛿𝑖6, 𝜉𝑖 such that𝜗𝑖4 ≤ 𝛿𝑖5 𝜂 + 𝛿𝑖6 ‖𝜅‖ + 𝑟𝜉𝑖 𝜂 , (24)

where 𝜉𝑖 = 𝑚∑
𝑙,𝑑=1

(𝑏𝑖𝑙 − 𝑏∗𝑖𝑙 ) �̂�∗𝑙𝑑𝑎𝑑(𝑛𝑑+1) . (25)

Thus, it follows that the closed-loop of the 𝑥-subsystem of
(1), 2, and (8) is equivalent to𝑑𝜅𝑖 = 𝐴𝑛𝑖𝜅𝑖𝑑𝑡 + 𝐵𝑛𝑖 [𝑖 (𝜅𝑖) + Δ 𝑖 + 𝜂𝑖(𝑛𝑖+1)] 𝑑𝑡,

𝑑𝜂𝑖 = 𝑟𝐴𝑛𝑖+1𝜂𝑖𝑑𝑡 − 𝑟( 𝑎𝑖1𝜂𝑖1⋅ ⋅ ⋅𝑎𝑖(𝑛𝑖+1)𝜂𝑖1)𝑑𝑡
+ 𝐵𝑛𝑖+1 (𝜗𝑖1 + 𝜗𝑖4) 𝑑𝑡 + 𝐵𝑛𝑖+1𝜗𝑖2𝑑𝑊1 (𝑡)+ 𝐵𝑛𝑖+1𝜗𝑖3𝑑𝑊2 (𝑡) , 1 ≤ 𝑖 ≤ 𝑚,

(26)

where Δ 𝑖 is defined as that in (18). It follows from the defini-
tion of Δ 𝑖 in (18) thatΔ 𝑖2≤ (max

1≤𝑗≤𝑛𝑖

𝑘𝑖𝑗)2 [(𝑥𝑖1 − 𝑥𝑖1)2 + ⋅ ⋅ ⋅ + (𝑥𝑖𝑛𝑖 − 𝑥𝑖𝑛𝑖)2]= (max
1≤𝑗≤𝑛𝑖

𝑘𝑖𝑗)2 [ 1𝑟2𝑛𝑖 𝜂𝑖12 + ⋅ ⋅ ⋅ + 1𝑟2 𝜂𝑖𝑛𝑖 2]≤ (max
1≤𝑗≤𝑛𝑖

𝑘𝑖𝑗)2 𝜂𝑖2 , 𝑖 = 1, 2, . . . , 𝑚.
(27)

The remaining proof is arranged in the following three steps.

Step 1. We prove that the solution (𝜅, 𝜂) of system (26) is
practically mean square bounded.

We first define the positive definite functions 𝑉1𝑖(⋅) :
R𝑛𝑖 → R, 𝑉2𝑖(⋅) : R𝑛𝑖+1 → R, and 𝑉(⋅) : R2𝑛+𝑚 → R
as follows: 𝑉1𝑖 (𝜅𝑖) = 𝜅⊤𝑖 𝐻𝑖𝜅𝑖,𝑉2𝑖 (𝜂𝑖) = 𝜂⊤𝑖 𝑄𝑖𝜂𝑖,𝑉 (𝜅, 𝜂) = 𝑚∑

𝑖=1

𝑉1𝑖 (𝜅𝑖) + 𝑚∑
𝑖=1

𝑉2𝑖 (𝜂𝑖) , (28)

where 𝐻𝑖 and 𝑄𝑖 are the positive definite matrix solutions
satisfying the Lyapunov equations 𝐻𝑖𝐹𝑖 + 𝐹⊤𝑖 𝐻𝑖 = −𝐼𝑛𝑖×𝑛𝑖 and𝑄𝑖𝐸𝑖 + 𝐸⊤𝑖 𝑄𝑖 = −𝐼(𝑛𝑖+1)×(𝑛𝑖+1), respectively.

It is easy to obtain that

𝜆min (𝐻𝑖) 𝜅𝑖2 ≤ 𝑉1𝑖 (𝜅𝑖) ≤ 𝜆max (𝐻𝑖) 𝜅𝑖2 , 𝜕𝑉1𝑖 (𝜅𝑖)𝜕𝜅𝑖𝑛𝑖  ≤ 2𝜆max (𝐻𝑖) 𝜅𝑖 , 𝜕2𝑉1𝑖 (𝜅𝑖)𝜕𝜅2𝑛𝑖  ≤ 2𝜆max (𝐻𝑖) ,
𝜆min (𝑄𝑖) 𝜂𝑖2 ≤ 𝑉2𝑖 (𝜂𝑖) ≤ 𝜆max (𝑄𝑖) 𝜂𝑖2 , 𝜕𝑉2𝑖 (𝜂𝑖)𝜕𝜂𝑖(𝑛𝑖+1)  ≤ 2𝜆max (𝑄𝑖) 𝜂𝑖 , 𝜕2𝑉2𝑖 (𝜂𝑖)𝜕𝜂2𝑖𝑛𝑖  ≤ 2𝜆max (𝑄𝑖) , 𝜕2𝑉2𝑖 (𝜂𝑖)𝜕𝜂2

𝑖(𝑛𝑖+1)

 ≤ 2𝜆max (𝑄𝑖) , 𝜕2𝑉2𝑖 (𝜂𝑖)𝜕𝜂𝑖𝑛𝑖𝜕𝜂𝑖(𝑛𝑖+1)  ≤ 2𝜆max (𝑄𝑖) .

(29)

Apply Itô’s formula to 𝑉(𝜅, 𝜂) with respect to 𝑡 along the
solution (𝜅, 𝜂) of system (26) to obtain

𝑑𝑉 (𝜅, 𝜂) = 𝑚∑
𝑖=1

[[𝑛𝑖−1∑𝑗=1 𝜕𝑉1𝑖 (𝜅𝑖)𝜕𝜅𝑖𝑗 𝜅𝑖(𝑗+1) + 𝜕𝑉1𝑖 (𝜅𝑖)𝜕𝜅𝑖𝑛𝑖 𝑖 (𝜅𝑖)
+ 𝜕𝑉1𝑖 (𝜅𝑖)𝜕𝜅𝑖𝑛𝑖 Δ 𝑖 + 𝜕𝑉1𝑖 (𝜅𝑖)𝜕𝜅𝑖𝑛𝑖 𝜂𝑖(𝑛𝑖+1)] 𝑑𝑡
+ 𝑟 𝑚∑
𝑖=1

[[ 𝑛𝑖∑𝑗=1𝜕𝑉2𝑖 (𝜂𝑖)𝜕𝜂𝑖𝑗 (𝜂𝑖(𝑗+1) − 𝑎𝑖𝑗𝜂𝑖1)
− 𝜕𝑉2𝑖 (𝜂𝑖)𝜕𝜂𝑖(𝑛𝑖+1) 𝑎𝑖(𝑛𝑖+1)𝜂𝑖1]]𝑑𝑡 + 𝑚∑𝑖=1𝜕𝑉2𝑖 (𝜂𝑖)𝜕𝜂𝑖(𝑛𝑖+1) (𝜗𝑖1+ 𝜗𝑖4) 𝑑𝑡 + 𝑚∑

𝑖=1

12 𝜕2𝑉2𝑖 (𝜂𝑖)𝜕𝜂2
𝑖(𝑛𝑖+1)

[𝜗𝑖22 + 𝜗𝑖32] 𝑑𝑡
+ 𝑚∑
𝑖=1

𝜕𝑉2𝑖 (𝜂𝑖)𝜕𝜂𝑖(𝑛𝑖+1) 𝜗𝑖2𝑑𝑊1 (𝑡) + 𝑚∑𝑖=1𝜕𝑉2𝑖 (𝜂𝑖)𝜕𝜂𝑖(𝑛𝑖+1) 𝜗𝑖3𝑑𝑊2 (𝑡) .

(30)
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It is easy to conclude that there exist 0 < 𝜇 < 1 and 𝑟1 > 0
such that

− 𝑟1Ξ2 + 4𝜇max
1≤𝑖≤𝑚

𝜆2max (𝐻𝑖) max
1≤𝑖≤𝑚

(max
1≤𝑗≤𝑛𝑖

𝑘𝑖𝑗)2+ 4𝜇max
1≤𝑖≤𝑚

𝜆2max (𝐻𝑖) + 1 + 𝑚∑
𝑖=1

2𝜆max (𝑄𝑖) 𝛿𝑖2
+ 4max1≤𝑖≤𝑚 (𝜆2max (𝑄𝑖) 𝛿2𝑖3)𝜇+ 𝑚∑
𝑖=1

2𝜆max (𝑄𝑖) 𝛿𝑖5
+ 4max1≤𝑖≤𝑚 (𝜆2max (𝑄𝑖) 𝛿2𝑖6)𝜇 < 0,

(31)

where Ξ is given in (14). Now we suppose that

𝑟 > 𝑟∗ ≜ max{1, 𝑟1, 2 (1 − 𝜇)Ξ } . (32)

Set

𝛽1 = max {max
1≤𝑖≤𝑚

{𝜆max (𝐻𝑖)} , max
1≤𝑖≤𝑚

{𝜆max (𝑄𝑖)}} . (33)

It follows from (22), (24), (27), (31), andYoung’s inequality
that

𝑑E𝑉(𝜅, 𝜂)𝑑𝑡 ≤ −E ‖𝜅‖2 + 𝑚∑
𝑖=1

2𝜆max (𝐻𝑖) max
1≤𝑗≤𝑛𝑖

𝑘𝑖𝑗⋅ E (𝜅𝑖 ⋅ 𝜂𝑖) + 𝑚∑
𝑖=1

2𝜆max (𝐻𝑖)E (𝜅𝑖 ⋅ 𝜂𝑖(𝑛𝑖+1))− 𝑟E 𝜂2 + 𝑚∑
𝑖=1

2𝜆max (𝑄𝑖)E {𝜂𝑖 ⋅ (𝛿𝑖1 + 𝛿𝑖2 𝜂+ 𝛿𝑖3 ‖𝜅‖ + 𝛿𝑖5 𝜂 + 𝛿𝑖6 ‖𝜅‖ + 𝑟𝜉𝑖 𝜂)}+ 𝑚∑
𝑖=1

𝜆max (𝑄𝑖) 𝛿𝑖4 ≤ −E ‖𝜅‖2 + 𝜇4E ‖𝜅‖2 + 4𝜇⋅ max
1≤𝑖≤𝑚

𝜆2max (𝐻𝑖) ⋅ max
1≤𝑖≤𝑚

(max
1≤𝑗≤𝑛𝑖

𝑘𝑖𝑗)2 E 𝜂2 + 𝜇4⋅ E ‖𝜅‖2 + 4𝜇max
1≤𝑖≤𝑚

𝜆2max (𝐻𝑖)E 𝜂2 − 𝑟E 𝜂2

+ E
𝜂2 + 𝑚∑

𝑖=1

𝜆2max (𝑄𝑖) 𝛿2𝑖1 + 𝑚∑
𝑖=1

2𝜆max (𝑄𝑖)⋅ 𝛿𝑖2E 𝜂2 + 𝜇4E ‖𝜅‖2+ 4max1≤𝑖≤𝑚 (𝜆2max (𝑄𝑖) 𝛿2𝑖3)𝜇 E
𝜂2+ 𝑚∑

𝑖=1

2𝜆max (𝑄𝑖) 𝛿𝑖5E 𝜂2 + 𝜇4E ‖𝜅‖2
+ 4max1≤𝑖≤𝑚 (𝜆2max (𝑄𝑖) 𝛿2𝑖6)𝜇 E

𝜂2+ 𝑟 𝑚∑
𝑖=1

2𝜆max (𝑄𝑖) 𝜉𝑖E 𝜂2 + 𝑚∑
𝑖=1

𝜆max (𝑄𝑖) 𝛿𝑖4≤ − (1 − 𝜇)E ‖𝜅‖2 − 𝑟Ξ2 E
𝜂2 + 𝛽2 ≤ −1 − 𝜇𝛽1⋅ E𝑉(𝜅, 𝜂) + 𝛽2,

(34)

where 𝛽2 ≜ ∑𝑚𝑖=1 𝜆2max(𝑄𝑖)𝛿2𝑖1 + ∑𝑚𝑖=1 𝜆max(𝑄𝑖)𝛿𝑖4 and Ξ is
given in (14). It is easy to conclude that E𝑉(𝜅(0), 𝜂(0)) ≤𝑀1𝑟2max1≤𝑖≤𝑚𝑛𝑖 for some 𝑟-independent constant 𝑀1. Hence
for any 𝑟 > 𝑟∗ and any 𝜖 > 0, there exists 𝑡𝑟 ≜ 𝑟𝜖 such that, for
all 𝑡 ≥ 𝑡𝑟, we have

E𝑉(𝜅, 𝜂) ≤ 𝑒−((1−𝜇)/𝛽1)𝑡E𝑉(𝜅 (0) , 𝜂 (0))+ 𝛽2 ∫𝑡
0
𝑒−((1−𝜇)/𝛽1)(𝑡−𝑠)𝑑𝑠≤ 𝑒−((1−𝜇)/𝛽1)𝑡𝑟E𝑉(𝜅 (0) , 𝜂 (0)) + 𝛽1𝛽21 − 𝜇≤ 𝑀2,

(35)

for some 𝑟-independent constant𝑀2 > 0.
Step 2. We prove the convergence of the estimation errors
of ESO for both unmeasured states and stochastic total
disturbance in practical mean square sense.

Similar to the operations used in (34), it follows from (35)
that, for all 𝑡 ≥ 𝑡𝑟, we have𝑑E𝑉2 (𝜂)𝑑𝑡 ≤ −𝑟Ξ2 E

𝜂2 + 𝜇2E ‖𝜅‖2 + 𝛽2≤ − 𝑟Ξ2max1≤𝑖≤𝑚 {𝜆max (𝑄𝑖)}E𝑉2 (𝜂)+ 𝜇𝑀22min1≤𝑖≤𝑚 {𝜆min (𝐻𝑖)} + 𝛽2.
(36)
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Set 𝛽3 = Ξ2max1≤𝑖≤𝑚 {𝜆max (𝑄𝑖)} ,𝛽4 = 𝜇𝑀22min1≤𝑖≤𝑚 {𝜆min (𝐻𝑖)} + 𝛽2. (37)

Then

E𝑉2 (𝜂) ≤ 𝑒−𝑟𝛽3(𝑡−𝑡𝑟)E𝑉2 (𝜂 (𝑡𝑟)) + 𝛽4 ∫𝑡
𝑡𝑟

𝑒−𝑟𝛽3(𝑡−𝑠)𝑑𝑠. (38)

We can see from (35) that the first term of the right-hand
side of (38) is bounded by 𝑒−𝑟𝛽3 multiplied by a 𝑟-independent
constant and the second term is bounded by 1/𝑟multiplied by
a 𝑟-independent constant when 𝑡 ≥ 𝑡𝑟 + 1; thus there exists a𝑟-independent constant 𝛽5 > 0 such that, for all 𝑡 ≥ 𝑡𝑟 + 1,

E𝑉2 (𝜂) ≤ 𝛽5𝑟 , (39)

and thus

E
𝜂𝑖2 ≤ E𝑉2 (𝜂)𝜆min (𝑄𝑖) ≤ 𝛽5𝑟𝜆min (𝑄𝑖) . (40)

Therefore, for all 𝑡 ≥ 𝑡𝑟 + 1, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖 + 1, we have
E
𝑥𝑖𝑗 − 𝑥𝑖𝑗2 = 1𝑟2𝑛𝑖+2−2𝑗E 𝜂𝑖𝑗2 ≤ 1𝑟2𝑛𝑖+2−2𝑗E 𝜂𝑖2≤ 𝛽5𝜆min (𝑄𝑖) 𝑟2𝑛𝑖+3−2𝑗 . (41)

Step 3. We prove the convergence of the reference signals
tracking errors in practical mean square.

For any 𝑟 > 𝑟∗ and all 𝑡 ≥ 𝑡𝑟 + 1, it follows from (34) and
(40) that𝑑E𝑉1 (𝜅)𝑑𝑡 ≤ −(1 − 𝜇2)E ‖𝜅‖2 + (4𝜇max

1≤𝑖≤𝑚
𝜆2max (𝐻𝑖)

⋅ max
1≤𝑖≤𝑚

(max
1≤𝑗≤𝑛𝑖

𝑘𝑖𝑗)2 + 4𝜇max
1≤𝑖≤𝑚

𝜆2max (𝐻𝑖))E
𝜂2

≤ −(1 − 𝜇2)E ‖𝜅‖2 + (4𝜇max
1≤𝑖≤𝑚

𝜆2max (𝐻𝑖)
⋅ max
1≤𝑖≤𝑚

(max
1≤𝑗≤𝑛𝑖

𝑘𝑖𝑗)2 + 4𝜇max
1≤𝑖≤𝑚

𝜆2max (𝐻𝑖))⋅ 𝑚𝛽5𝑟min1≤𝑖≤𝑚𝜆min (𝑄𝑖) ≤ −𝛽6E𝑉1 (𝜅) + 𝛽7𝑟 ,
(42)

where we set 𝛽6 = 1 − 𝜇/2
max1≤𝑖≤𝑚 {𝜆max (𝐻𝑖)} (43)

and 𝛽7 = (4𝜇max
1≤𝑖≤𝑚

𝜆2max (𝐻𝑖) max
1≤𝑖≤𝑚

(max
1≤𝑗≤𝑛𝑖

𝑘𝑖𝑗)2
+ 4𝜇max
1≤𝑖≤𝑚

𝜆2max (𝐻𝑖)) 𝑚𝛽5
min1≤𝑖≤𝑚𝜆min (𝑄𝑖) . (44)

Therefore, for any 𝑟 > 𝑟∗ and all 𝑡 ≥ 𝑡𝑟 + 1, we have
E ‖𝜅‖2≤ 1

min1≤𝑖≤𝑚 {𝜆min (𝐻𝑖)} 𝑒−𝛽6(𝑡−𝑡𝑟−1)E𝑉1 (𝜅 (𝑡𝑟 + 1))+ 𝛽7𝑟min1≤𝑖≤𝑚 {𝜆min (𝐻𝑖)} ∫𝑡𝑡𝑟+1 𝑒−𝛽6(𝑡−𝑠)𝑑𝑠.
(45)

It follows from (35) that the first term of the right-hand side
of (45) is bounded by 𝑒−𝛽6𝑟𝜖 multiplied by a 𝑟-independent
constant and the second term is bounded by 1/𝑟 multiplied
by a 𝑟-independent constant when for all 𝑡 ≥ 2𝑡𝑟 + 1 so that
there exist 𝑡∗𝑟 ≥ 2𝑡𝑟 + 1 and Γ ≥ 𝛽5/min1≤𝑖≤𝑚𝜆min(𝑄𝑖) > 0
such that, for all 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖, we have

E
𝑥𝑖𝑗 − V𝑖𝑗

2 = E
𝜅𝑖2 ≤ E ‖𝜅‖2 ≤ Γ𝑟 , ∀𝑡 ≥ 𝑡∗𝑟 . (46)

This completes the proof of Theorem 2.

4. Numerical Simulations

In this section, we aim to verify the validity of the ADRC
approach by considering the following MIMO uncertain
stochastic system:𝑑𝑥11 = 𝑥12𝑑𝑡,𝑑𝑥12 = [𝑐1𝑥12 + 𝑐2𝑥21 + 𝑐3𝜁 + 𝑐4 sin (𝑐5𝑡 + 𝑐6𝑊2 (𝑡))+ 𝑢1 + 𝑢2] 𝑑𝑡,𝑑𝑥21 = 𝑥22𝑑𝑡,𝑑𝑥22 = [𝑐7𝑥21 + 𝑐8𝑥12 + 𝑐9𝜁 + 𝑐10 sin (𝑐5𝑡 + 𝑐6𝑊2 (𝑡))+ 𝑢1 − 𝑢2] 𝑑𝑡𝑑𝜁 = [𝑐11 sin (𝜁) ⋅ 𝑥11 + 𝑐12 cos (𝜁) ⋅ 𝑥22] 𝑑𝑡 + 𝑐13 sin (𝜁)⋅ sin (𝑐5𝑡 + 𝑐6𝑊2 (𝑡)) 𝑑𝑊1 (𝑡) ,𝑦1 = 𝑥11,𝑦2 = 𝑥21,

(47)

where 𝑐𝑖 (𝑖 = 1, 2, . . . , 13) are unknown parameters satisfying|𝑐𝑖| ≤ 𝑀 (𝑖 = 1, 2, . . . , 13) for a given known constant𝑀 > 0. 𝑤(𝑡) ≜ sin(𝑐5𝑡 + 𝑐6𝑊2(𝑡)) is a bounded nonwhite
noise that exists in many practical dynamical systems like
the motion of oscillators [26, 27], where 𝑐5 and 𝑐26 denote
the central frequency and strength of frequency disturbance,
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respectively. In this case, 𝑚 = 2, 𝑛1 = 𝑛2 = 2, 𝑛 = 𝑛1 +𝑛2 = 4, 𝑠 = 1, 𝑝 = 𝑞 = 1, 𝑏11 = 𝑏12 = 𝑏21 = 1, 𝑏22 =−1. In addition, the constants 𝐷𝑖 (𝑖 = 1, 2, 3, 4) and the
function 𝜍(𝑤) in Assumptions (A1)-(A2) can be specified as𝐷1 = max{1, 𝑐5, 𝑐6, 𝑐26 }, 𝐷2 = 0, 𝐷3 = max{𝑐11, 𝑐12}, 𝐷4 =
max{𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐7, 𝑐8, 𝑐9, 𝑐10}, and 𝜍(𝑤) = 𝑐13|𝑤|.We can easily
check that Assumptions (A1)-(A2) hold in this case.

The stochastic total disturbance (𝑥13, 𝑥23)⊤ is defined by𝑥13 = 𝑐1𝑥12 + 𝑐2𝑥21 + 𝑐3𝜁 + 𝑐4 sin (𝑐5𝑡 + 𝑐6𝑊2 (𝑡)) ,𝑥23 = 𝑐7𝑥21 + 𝑐8𝑥12 + 𝑐9𝜁 + 𝑐10 sin (𝑐5𝑡 + 𝑐6𝑊2 (𝑡)) . (48)

An ESO (49) is designed for system (47) as follows:̇̂𝑥11 = 𝑥12 + 3𝑟 (𝑦1 − 𝑥11) ,̇̂𝑥12 = 𝑥13 + 3𝑟2 (𝑦1 − 𝑥11) + 𝑢1 + 𝑢2,̇̂𝑥13 = 𝑟3 (𝑦1 − 𝑥11) ,̇̂𝑥21 = 𝑥22 + 3𝑟 (𝑦2 − 𝑥21) ,̇̂𝑥22 = 𝑥23 + 3𝑟2 (𝑦2 − 𝑥21) + 𝑢1 − 𝑢2,̇̂𝑥23 = 𝑟3 (𝑦2 − 𝑥21) .
(49)

In this case the corresponding matrices in (5) become

𝐸1 = 𝐸2 = (−3 1 0−3 0 1−1 0 0) , (50)

where all eigenvalues are -1 and thus these two matrices are
Hurwitz. Choose 𝑖 : R2 → R (𝑖 = 1, 2) in (7) as follows:1 (𝑧11, 𝑧12) = −2𝑧11 − 3𝑧12,2 (𝑧21, 𝑧22) = −2𝑧21 − 2𝑧22 (51)

with the corresponding matrices in (9)𝐹1 = ( 0 1−2 −3) ,𝐹2 = ( 0 1−2 −2) (52)

being Hurwitz. ESO (49) based feedback control is designed
as 𝑢1 = 12 (1 (𝑥11 − V11, 𝑥12 − V12) − 𝑥13 + V13)+ 12 (2 (𝑥21 − V21, 𝑥22 − V22) − 𝑥23 + V23) ,𝑢2 = 12 (1 (𝑥11 − V11, 𝑥12 − V12) − 𝑥13 + V13)− 12 (2 (𝑥21 − V21, 𝑥22 − V22) − 𝑥23 + V23) ,

(53)

where in this case �̂�∗𝑖𝑙 (𝑖, 𝑙 = 1, 2) in (8) are specified as �̂�∗11 =�̂�∗12 = �̂�∗21 = 1/2, �̂�∗22 = −1/2. Both system (47) and system
(49) are discretized by the Milstein approximation method
proposed in [34]. In Figures 1 and 2, the initial values are𝑥 (0) = (1, −1, 1, −1) ,𝜁 (0) = 0,𝑥 (0) = (0, 0, 0, 0, 0, 0) , (54)

the time discrete step is taken asΔ𝑡 = 0.001, (55)

and the gain 𝑟 in (49) is taken as𝑟 = 100. (56)

The uncertain parameters and reference signals in Figures 1
and 2 are taken as 𝑐1 = 1,𝑐2 = 2,𝑐3 = 1,𝑐4 = 13 ,𝑐𝑖 = 1 (𝑖 = 5, 6, . . . , 13) ,

V11 (𝑡) = sin (𝑡 + 1) ,
V21 (𝑡) = cos (𝑡 + 1) ,

(57)

and 𝑐1 = 1,𝑐2 = 2,𝑐3 = 2,𝑐4 = 1,𝑐5 = 1,𝑐6 = 2,𝑐7 = 1,𝑐8 = 1.5,𝑐𝑖 = 2 (𝑖 = 9, 10, 11, 12, 13) ,
V11 (𝑡) = sin (2𝑡 + 1) ,
V21 (𝑡) = cos (2𝑡 + 1) ,

(58)

respectively.
It is observed from both Figures 1 and 2 that ESO (49) is

very valid to estimate both the state 𝑥 = (𝑥11, 𝑥12, 𝑥21, 𝑥22)⊤
and the stochastic total disturbance 𝑥 = (𝑥13, 𝑥23)⊤ defined
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Figure 1: Estimation of unmeasured states and stochastic total disturbance of the ADRC’s closed-loop system and the closed-loop reference
signal tracking with the uncertain parameters and the reference signal given in (57).

in (48), despite varying system parameters and reference
signals between (57) and (58). In addition, it is seen from
Figures 1 and 2 that the tracking effects of 𝑥𝑖1(𝑖 = 1, 2) to
V𝑖1(𝑡) (𝑖 = 1, 2) and 𝑥𝑖2 (𝑖 = 1, 2) to V𝑖2(𝑡) (𝑖 = 1, 2) are very
satisfactory. Figure 2 shows that the estimation effects of ESO
and the performance of reference signals tracking are still
very effective regardless of the larger parameters than the one
given in (57), which validates the good robust performance
of ADRC.

5. Concluding Remarks

In this paper, the active disturbance rejection control (ADRC)
approach is applied to the output regulation problem for a
class of multi-input multioutput (MIMO) uncertain stochas-
tic nonlinear systems subject to vast stochastic uncertainties.
The stochastic uncertainties of each subsystem including
unknown nonlinear system functions, external stochastic
disturbance with unknown statistical property, unknown

stochastic inverse dynamics, uncertain nonlinear coupling
effects between subsystems, and uncertainties caused by
the partially unknown input gains are first regarded as
the stochastic total disturbance of each subsystem. The
stochastic total disturbance is then estimated by a linear
ESO in real time and cancelled in the ESO-based out-
put feedback loop. The output regulation performance of
the resulting ADRC’s closed-loop system is obtained with
rigorous theoretical proof including practical mean square
reference signals tracking, disturbance attenuation, and prac-
tical mean square stability when the reference signals are
zero. Finally, the validity of the estimation performance of
ESO, efficient reference tracking of ADRC, and good robust
performance of ADRC are shown by some numerical simula-
tions.

Data Availability
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Figure 2: Estimation of unmeasured states and stochastic total disturbance of the ADRC’s closed-loop system and the closed-loop reference
signal tracking with the uncertain parameters and the reference signal given in (58).
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